Direkt zum Inhalt

Elektrodynamik

Lerne die elektromagnetischen Eigenschaften unseres Universums kennen. Hier geht es um Elektrische Ladungen, Ströme, elektromagnetische Felder und so weiter.
Video
Level 3 (mit höherer Mathematik)

Maxwell-Gleichungen in 41 Minuten komplett verstehen!

Hier werden die Maxwell-Gleichungen einfach erklärt. Dazu werden zuerst elektrische und magnetische Felder, sowie der Gauß-Integralsatz und Stokes-Integralsatz erläutert.

Inhalt des Videos
  1. ⏲ [00:15] Anwendungen der Maxwell-Gleichungen – zur Einstimmung.
  2. ⏲ [02:04] Elektrisches Feld
  3. ⏲ [04:57] Magnetisches Feld
  4. ⏲ [10:00] Gauß-Integralsatz – dieses mathematische Theorem verknüpft das Volumenintegral über die Divergenz eines Vektorfeldes mit dem Flächenintegral dieses Vektorfeldes.
  5. ⏲ [18:00] Stokes-Integralsatz – dieses mathematische Theorem verknüpft das Flächenintegral über die Rotation eines Vektorfeldes mit dem Linienintegral dieses Vektorfeldes.
  6. ⏲ [24:17] Erste Maxwell-Gleichung - sagt aus, dass die Ladungen Quellen und Senken des elektrischen Feldes sind.
  7. ⏲ [27:54] Zweite Maxwell-Gleichung – sagt aus, dass magnetische Ladungen stets als Dipole vorkommen. Es gibt keine magnetischen Monopole.
  8. ⏲ [30:59] Dritte Maxwell-Gleichung (Induktionsgesetz) – sagt aus, dass zeitlich veränderliche Magnetfelder elektrische Wirbelfelder erzeugen und andersherum. Hier steckt auch die Lenz-Regel.
  9. ⏲ [35:33] Vierte Maxwell-Gleichung – sagt aus, dass das Magnetfeld durch elektrische Ströme und zeitlich veränderliche elektrische Felder (Verschiebungsstrom) erzeugt werden kann.
Video
Level 2 (ohne höhere Mathematik)

Plattenkondensator und seine 5 wichtigsten Größen, die Du kennen solltest

Hier wird der Plattenkondensator einfach erklärt. Dabei lernst du anhand des Kondensator die elektrische Spannung, elektrisches Feld und elektrische Kapazität kennen und, wie du sie bei einem Plattenkondensator berechnen kannst.

Inhalt des Videos
  1. [00:00] Aufbau und Anwendungen
  2. [01:56] Spannung am Kondensator
  3. [03:48] Kapazität des Kondensators
  4. [05:09] Kraft auf eine Probeladung & Elektrisches Feld
Video
Level 2 (ohne höhere Mathematik)

Wienfilter (Geschwindigkeitsfilter) in 7 Minuten einfach erklärt!

In diesem Video lernst Du, wie man mit einem Geschwindigkeitsfilter (Wienfilter) die Geschwindigkeiten geladener Teilchen ausfiltern kann.

Inhalt des Videos
  1. ⏲ [0:15] Versuchsaufbau - Wienfilter besteht im Prinzip aus einem Plattenkondensator mit Abschirmung, einer Teilchenkanone und einem Magnetfeld.
  2. ⏲ [0:45] Lorentzkraft - sie wirkt entgegen der elektrischen Kraft und lenkt Ladungen auf eine Kreisbahn.
  3. ⏲ [01:35] Drei-Finger-Regel - damit bestimmst Du die Richtung der Lorentzkraft.
  4. ⏲ [03:42] Elektrische Kraft - wird durch den Plattenkondensator erzeugt und wird so eingestellt, dass sie der Lorentzkraft entgegen wirkt.
  5. ⏲ [04:36] Funktionsweise des Geschwindigkeitfilters - anhand der Lorentzkraft, Drei-Finger-Regel und der elektrischen Kraft, lernst Du wie ein Wienfilter funktioniert.
Video
Level 2 (ohne höhere Mathematik)

Millikan-Experiment in 17 Minuten komplett verstehen!

Hier lernst Du Millikan-Versuch mit coolen Animationen! Vom Versuchsaufbau, über Schwebemethode und Gleichfeldmethode, bis zur Auswertung.

Inhalt des Videos
  1. ⏲ [0:15] Versuchsaufbau - alles, was Du für den Millikan-Versuch brauchst. Vom Plattenkondensator bis zum Zerstäuber.
  2. ⏲ [1:33] Grundlagen - damit Du Millikan-Versuch besser verstehst! Dazu werde beispielsweise alle 4 wirkenden Kräfte vorgestellt: Schwerkraft, Elektrische Kraft, Stokessche Reibungskraft und Auftriebskraft.
  3. ⏲ [6:15] Schwebemethode - hier ermittelst Du die Steiggeschwindigkeit und die Fallgeschwindigkeit bei ausgeschaltetem Plattenkondensator.
  4. ⏲ [11:30] Gleichfeldmethode - hier ermittelst Du ebenfalls die Steig- und Fallgeschwindigkeit; jedoch bei konstant gehaltener Spannung.
  5. ⏲ [14:37] Elementarladung & Weiterführendes - nachdem der Millikan-Versuch durchgeführt wurde, ergibt sich ein Diagramm, welches diskrete Verteilung der Ladungen von Öltröpfchen zeigt. Hier wirst Du auch die Elementarladung ablesen können. Außerdem wird Cunningham-Korrektur, sowie Fadenstrahlrohr und Hall-Effekt erwähnt.
Video
Level 2 (ohne höhere Mathematik)

Lenz-Regel in 11 Minuten einfach erklärt!

Hier lernst du, was Lenzsche Regel ist und wie man zum Beispiel Induktionsstrom-Richtung bestimmt, die durch Lenzsche Regel festgelegt ist.

Inhalt des Videos
  1. ⏲ [00:04] Was besagt die Lenz-Regel?
  2. ⏲ [1:34] Leiterschaukel
  3. ⏲ [5:00] Energieerhaltung
  4. ⏲ [6:00] Beispiele
  5. ⏲ [9:42] Anwendungen
Video
Level 2 (ohne höhere Mathematik)

Drei-Finger-Regel in 6 Minuten einfach erklärt!

Mit der drei-Finger-Regel (auch UVW-Regel genannt) kannst Du beispielsweise mit der linken Hand die Richtung der Lorentzkraft bestimmen.

Inhalt des Videos
  1. ⏲ [00:15] Stromdurchflossener Leiter im Magnetfeld
  2. ⏲ [04:41] Übungen zur Drei-Finger-Regel
Video
Level 2 (ohne höhere Mathematik)

Elektromagnetische Induktion in 14 Minuten einfach erklärt!

Hier lernst Du elektromagnetische Induktion kennen. Beispielsweise wie ein Induktionsstrom durch Lorentzkraft oder Magnetfeld-Änderung entsteht.

Inhalt des Videos
  1. ⏲ [00:18] Ein bisschen Geschichte
  2. ⏲ [00:58] Leiterschaukel-Versuch (+ Induktionsstrom)
  3. ⏲ [06:36] Herleitung der Induktionsspannung
  4. ⏲ [09:24] Leiterschleife (Magnetfeldänderung / Flächenänderung)
Video
Level 2 (ohne höhere Mathematik)

Fadenstrahlrohr in 5 Minuten einfach erklärt!

In diesem Videos lernst Du alles rund um Fadenstrahlrohr. Wie er aufgebaut ist und wie spezifische Ladung mittels Lorentzkraft hergeleitet wird.

Inhalt des Videos
  1. ⏲ [00:18] Versuchsaufbau + Grundlagen
  2. ⏲ [01:32] Erklärung der Kreisbahn + Herleitung
Video
Level 2 (ohne höhere Mathematik)

Coulomb-Gesetz in 11 Minuten einfach erklärt!

Coulomb-Gesetz von Charles Augustin de Coulomb ist ein Gesetz aus der Elektrizitätslehre, welches die elektrische Kraftwirkung der Punktladungen beschreibt.

Inhalt des Videos
  1. ⏲ [00:28] Was besagt das Coulomb-Gesetz?
  2. ⏲ [02:25] Herleitung mit einem Experiment
  3. ⏲ [09:07] Beispielaufgabe