Direkt zum Inhalt
  1. Startseite
  2. Formeln
  3. 📖

Formel: Geladene unendliche Ebene Elektrisches Feld   Oberflächenladungsdichte  

Level 2
Level 2 setzt Schulmathematik voraus. Geeignet für Schüler.
\[ E ~=~ \frac{\sigma}{2 \varepsilon_0} \] \[ E ~=~ \frac{\sigma}{2 \varepsilon_0} \] \[ \sigma ~=~ 2\varepsilon_0 \, E \] Formel umstellen
Gauß-Schachtel schließt eine geladene Ebene ein

Elektrisches Feld

\( E \)
Einheit \( \frac{\text V}{\text m} \)
Elektrisches Feld (E-Feld) sagt aus, wie viel Kraft auf eine Probeladung ausgeübt wird, wenn diese Probeladung oberhalb oder unterhalb der geladenen Ebene platziert wird.

Das E-Feld tritt senkrecht aus der Ober- und Unterseite der Ebene aus.

Oberflächenladungsdichte

\( \sigma \)
Einheit \( \frac{\text{C}}{\text{m}^2} \)
Ladungsdichte an der Oberfläche der dünnen Ebene. Im Idealfall ist es die Ladungsdichte der zweidimensionalen (also unendlich dünnen) Ebene. Oberflächenladungsdichte gibt die Ladung pro Fläche an.

Elektrische Feldkonstante

\( \varepsilon_0 \)
Einheit \( \frac{\text{As}}{\text{Vm}} \)
Elektrische Feldkonstante tritt bei elektrischen Phänomenen auf und ist eine Naturkonstante mit dem Wert: \( \varepsilon_0 ~=~ 8.854 \,\cdot\, 10^{-12} \, \frac{\text{As}}{\text{Vm}} \).
Details zur Formel
  • Zusammenfassung: Mit dieser Formel kannst Du das elektrische Feld (E-Feld) einer unendlich ausgedehnten, dünnen Ebene berechnen.
  • Diese Formel wurde hinzugefügt von FufaeV am .
  • Diese Formel wurde aktualisiert von FufaeV am .
Wie zufrieden bist Du?