Direkt zum Inhalt
  1. Startseite
  2. Formeln
  3. #763

Formel Absorptionsgesetz Intensität   Eindringtiefe   Absorptionskoeffizient  

\[ I(x) ~=~ I_0 \, e^{-\mu \, x} \] \[ I(x) ~=~ I_0 \, e^{-\mu \, x} \] \[ x ~=~ - \frac{1}{\mu} \, \ln\left( \frac{I}{I_0} \right) \] \[ I_0 ~=~ I \, e^{\mu \, x} \] \[ \mu ~=~ - \frac{1}{x} \, \ln\left( \frac{I}{I_0} \right) \] Formel umstellen
Absorptionsgesetz - Intensitätskurve (Lambert-Beer-Gesetz)

Intensität

\( I \)
Unit \( \frac{\text W}{\text{m}^2} \)

Intensität der Röntgenstrahlung in der Tiefe \( x \) des Materials. Das Absorptionsgesetz besagt, dass die Intensität exponentiell mit der Eindringtiefe \(x\) abnimmt.

Eindringtiefe

\( x \)
Unit \( \text{m} \)

Eindringtiefe der Röntgenstrahlung (als einfallende Strahlung) in das betrachtete Material.

Anfangsintensität

\( I_0 \)
Unit \( \frac{\text W}{\text{m}^2} \)

Intensität der Röntgenstrahlung vor dem Eindringen, also bei \( x=0 \).

Absorptionskoeffizient

\( \mu \)
Unit \( \frac{1}{\text m} \)

Absorptionskoeffizient hängt von der Energie der Röntgenstrahlung ab. Je größer die Energie der Röntgenstrahlung ist, desto kleiner ist \( \mu \). Das heißt: Die Strahlung kann tiefer in das Material eindringen.

Details zum Inhalt
  • Zusammenfassung:Mit dieser Formel für Abstandsgesetz kannst Du berechnen, wie groß die Intensität der Strahlung nach dem Eindringen ins Material ist.
  • Dieser Inhalt wurde hinzugefügt von FufaeV am .
  • Dieser Inhalt wurde aktualisiert von FufaeV am .

Feedback geben

Hey! Ich bin Alexander FufaeV, der Physiker und Autor hier. Es ist mir wichtig, dass du stets sehr zufrieden bist, wenn du hierher kommst, um deine Fragen und Probleme zu klären. Da ich aber keine Glaskugel besitze, bin ich auf dein Feedback angewiesen. So kann ich Fehler beseitigen und diesen Inhalt verbessern, damit auch andere Besucher von deinem Feedback profitieren können.

Wie zufrieden bist Du?