Welche Einheit hat die Wellenfunktion?
Antwort #1
Die quantenmechanische Wellenfunktion \( \Psi \), die beispielsweise in der Schrödinger-Gleichung steckt, hat eine Einheit, die von der Dimension des jeweiligen Problems abhängt.
In drei Dimensionen: Die Einheit der Wellenfunktion \( \Psi_{3\text D} \) lässt sich beispielsweise leicht aus dem Betragsquadrat \( |\Psi_{3\text D}|^2 \) der Wellenfunktion ermitteln. Denn das Betragsquadrat ist die Wahrscheinlichkeitsdichte, hat also die Einheit: \( |\Psi_{3\text D}|^2 = \left[1/\text{m}^3\right] \). Wenn Du auf beiden Seiten die Wurzel ziehst, bekommst Du:
In zwei Dimensionen: Auch hier lässt sich die Einheit der Wellenfunktion \( \Psi_{2\text D} \) aus dem Betragsquadrat \( |\Psi_{2\text D}|^2 \) ermitteln. Mit dem einzigen Unterschied, dass zweidimensionale Systeme natürlich auf eine Fläche beschränkt sind: \( |\Psi_{2\text D}|^2 = \left[1/\text{m}^2\right] \). Wenn Du auf beiden Seiten die Wurzel ziehst, bekommst Du:
In einer Dimensionen: Hier gehst Du analog vor, nur dass das System jetzt auf eine Linie (1D) eingeschränkt ist, d.h. \( |\Psi_{1\text D}|^2 = \left[1/\text{m}\right] \). Für die Einheit der Wellenfunktion folgt also: