Direkt zum Inhalt
  1. Startseite
  2. Illustrationen
  3. #644

Illustration Dispersionsrelation der Gitterschwingungen - einatomiges Kristallgitter

Dispersionsrelation der Gitterschwingungen - einatomiges Kristallgitter
Download

Teilen — es ist erlaubt die Illustration vervielfältigen und weiterverbreiten

Bearbeiten — es ist erlaubt die Illustration zu verändern und darauf aufzubauen und zwar für beliebige Zwecke, sogar kommerziell.

Diese Illustration ist kostenlos mit Angabe des Copyrights: universaldenker.org

Hier siehst Du die Dispersionsrelation \( \omega (k) \) (Abhängigkeit der Frequenz \(\omega\) von der Wellenzahl \(k\)) für ein einatomiges Kristallgitter, welches aus Atomketten besteht, die einen Abstand \(a\) (genannt Gitterkonstante) zueinander haben. Mit dieser Relation wird beschrieben, wie ein Kristallgitter schwingt.

Normalerweise ist die resultierende Dispersionsrelation eine periodische Funktion. Da aber in all den anderen Perioden keine zusätzliche Information über die Gitterschwingungen enthalten ist, wird sie auf die 1. Brillouin-Zone reduziert, die im Bereich von \( -\frac{\pi}{a} \) bis \( \frac{\pi}{a} \) liegt. Bei dieser Dispersionsrelation ist sogar eine Reduktion nur auf die rechte hälfte der 1.BZ ausreichend.

Am Rand der 1.BZ (d.h. am Punkt \( \frac{\pi}{a} \)) verschwindet die Gruppengeschwindigkeit (Steigung der Funktion) und es ergeben sich stehende Wellen für alle Wellen, die die Wellenzahl \( k = \frac{\pi}{a} \) besitzen.

Details zur Illustration
  • Lizenz: CC BY 4.0Diese Illustration darf mit der Angabe des Copyrights weiterverwendet werden!
  • Copyright: © 2020
  • Diese Illustration wurde hochgeladen von FufaeV am .
  • Diese Illustration wurde aktualisiert von FufaeV am .

Feedback geben

Hey! Ich bin Alexander FufaeV, der Physiker und Autor hier. Es ist mir wichtig, dass du stets sehr zufrieden bist, wenn du hierher kommst, um deine Fragen und Probleme zu klären. Da ich aber keine Glaskugel besitze, bin ich auf dein Feedback angewiesen. So kann ich Fehler beseitigen und diesen Inhalt verbessern, damit auch andere Besucher von deinem Feedback profitieren können.

Wie zufrieden bist Du?