Direkt zum Inhalt

Quantenmechanik

Hier lernst du das merkwürde Verhalten des Mikrokosmos: die Quantisierung der Energie, Unschrärferelation, Tunneleffekt und so weiter. Begib dich in die Welt der Bausteine unseres Universums.
Lektion
Level 2 (für Schüler geeignet)

Franck-Hertz-Experiment

Hier wird Franck-Hertz-Versuch mit Quecksilber einfach erklärt: angefangen vom Aufbau, über inelastische Stöße bis zu Anregungszonen.

Video
Level 2 (für Schüler geeignet)

Photoelektrischer Effekt (Photoeffekt) in 47 Minuten komplett verstehen!

Ausführliche Erklärung des Photoeffekts und mit visueller Unterstützung. Innerhalb von 50 Minuten versuche ich dich mit dem Photoeffekt vertraut zu machen.

Inhalt des Videos
  1. ⏲ [00:57] Geschichtliche Entwicklung des Photoeffekts
  2. ⏲ [14:01] Versuchsaufbau
  3. ⏲ [18:53] Versuchsdurchführung
  4. ⏲ [27:05] Erklärung des Photoeffekts
  5. ⏲ [35:51] Praktische Anwendungen
  6. ⏲ [38:13] Beispielaufgabe: Planck-Konstante bestimmen
  7. ⏲ [40:23] Weitere Fakten über den Photoeffekt
  8. ⏲ [44:20] Widersprüche zur klassischen Wellentheorie
  9. ⏲ [45:48] Neue Forschungsergebnisse zum Photoeffekt
Video
Level 2 (für Schüler geeignet)

Kopenhagener Deutung: Dominierende Interpretation der Quantenmechanik in 7 Minuten einfach erklärt!

Kopenhagener Deutung - eine der mehreren Interpretationen der Quantenmechanik, die den mathematischen Formalismus interpretiert.

Inhalt des Videos

Kopenhagener Deutung - eine der mehreren Interpretationen der Quantenmechanik, die in den Schulen und Universitäten so gelehrt wird, als gäbe es keine Alternativen... In diesem Video lernst du die Merkmale der dominierenden Kopenhagener Deutung kennen. Sie wurde hauptsächlich von den Vätern der Quantenmechanik, Niels Bohr und Werner Heisenberg formuliert und basiert auf Wahrscheinlichkeit, die nicht mit der klassischen Wahrscheinlichkeit unseres Alltags vergleichbar ist. Das Ergebnis eines Würfels lässt sich unter der Voraussetzung, dass man alle auf ihn einwirkenden Kräfte kennt, berechnen; während das Verhalten eines Quantenobjekts (z.B. Elektron), sich naturgemäß nicht berechnen lässt. An einem Doppelspalt-Experiment sieht man diese Unvorhersagbarkeit deutlich. Sogar Teilchen sind in der Lage Interferenz am Schirm zu verursachen; vorausgesetzt: sie werden nicht gemessen. Sobald eine Messung stattfindet, verschwindet das Interferenzmuster; weil die Superposition des Quantenobjekts -- laut der Kopenhagener Deutung -- zerstört wird (Kollaps der Wellenfunktion). Ein wichtiger Bestandteil dieser Interpretation neben dem Korrespondenzprinzip, ist auch der Welle-Teilchen-Dualismus. Ein Quantenobjekt, das sich sowohl als ein Teilchen und auch als eine Welle charakterisiert und niemals vorhersagbar ist? Albert Einstein war jedenfalls damit nicht einverstanden, weshalb er mit zwei anderen Physikern das EPR-Paradoxon (Einstein-Podolsky-Rosen-Paradoxon) formulierte und eher das Konzept "Verborgene-Variablen-Theorie" verfolgte. Zu diesem Konzept gehört beispielsweise die Bohmsche Mechanik.