Direkt zum Inhalt
  1. Startseite
  2. Quests
  3. #353

Aufgabe mit Lösung Entladen eines Kondensators von 900V auf 10V

Visier mich an! Illustration bekommen
Betrachtete Schaltung zum Entladen des Kondensators.

Ein Kondensator der Kapazität \( C = 10 \, \mu\text{F} \) mit einem unbekannten vorgeschalteten Widerstand \(R\), ist auf \( U_0 = 900 \, \text{V} \) aufgeladen. Das Ziel ist es beim Entladen des Kondensators, dass das Entladen von \( 900 \, \text{V} \) auf \( 10 \, \text{V} \) innerhalb von \( 10 \, \text{s} \) passiert.

Wie groß muss dafür der Vorwiderstand \(R\) gewählt werden?

Lösungstipps

Benutze dafür den zeitlichen Verlauf der Spannung am Kondensator beim Entladevorgang:\[ U = U_0 \, e^{-\frac{t}{R\,C}} \]

Lösung

Lösung anzeigen
U-t-Diagramm - Entladen des Kondensators.

Der Kondensator ist laut der Quest auf \( U_0 = 900 \, \text{V} \) geladen. Das Entladen des Kondensators passiert nicht ruckartig von \( 900 \, \text{V} \) auf \( 0 \, \text{V} \), sondern das Entladen dauert eine Zeit lang. Diese Entladedauer hängt von der Anfangsspannung \(U_0\), von der Kapazität \(C\) des Kondensators und von dem mit dem in Serie geschalteten Widerstand \(R\) ab. Die gemessene Spannung \(U(t)\) am Kondensator ist also zeitabhängig und hat den folgenden exponentiellen Zusammenhang:1\[ U = U_0 \, e^{-\frac{t}{R\,C}} \]

Das Ziel ist es den Kondensator mit der Kapazität \( C = 10 \, \mu\text{F} \) von \( U_0 = 900 \, \text{V} \) auf \( U = 10 \, \text{V} \) innerhalb von \( t = 10 \, \text{s} \) zu entladen. Dafür muss der Widerstand \(R\) passen gewählt werden. Also wird 1 nach dem Widerstand umgeformt!

Bringe dazu \(U_0\) auf die andere Seite der Gleichung:2\[ \frac{U}{U_0} = e^{-\frac{t}{R\,C}} \]

Um die Exponentialfunktion aufzulösen, wird auf beiden Seiten der natürliche Logarithmus \( \ln() \) benutzt, da dieser die Umkrehfunktion der Exponentialfunktion ist:3\[ \ln\left(\frac{U}{U_0}\right) = -\frac{t}{R\,C} \]

Jetzt nur noch nach \(R\) umstellen:

4\[ R = -\frac{t}{C \, \ln\left(\frac{U}{U_0}\right)} \]

Einsetzen der gegebenen Größen ergibt:5\[ R = 222 \, \text{k}\Omega \]

Details zum Inhalt
  • Die Quest wurde hinzugefügt von FufaeV am .
  • Die Quest wurde aktualisiert von FufaeV am .

Feedback geben

Hey! Ich bin Alexander FufaeV, der Physiker und Autor hier. Es ist mir wichtig, dass du stets sehr zufrieden bist, wenn du hierher kommst, um deine Fragen und Probleme zu klären. Da ich aber keine Glaskugel besitze, bin ich auf dein Feedback angewiesen. So kann ich Fehler beseitigen und diesen Inhalt verbessern, damit auch andere Besucher von deinem Feedback profitieren können.

Wie zufrieden bist Du?