Direkt zum Inhalt
  1. Startseite
  2. Quests
  3. #380

Aufgabe mit Lösung Anzahl der Möglichkeiten: Teilchen auf Zustände verteilen

Wie viele Möglichkeiten gibt es...

  1. \( n \) unterscheidbare Teilchen auf \( m \) verschiedene, mehrfach besetzbare Zustände zu verteilen?
  2. \( n \) identische Teilchen auf \( m \) verschiedene, mehrfach besetzbare Zustände zu verteilen?
  3. \( n \) unterscheidbare Teilchen auf \( m \) verschiedene und nur einmalig besetzbare Zustände zu verteilen?
  4. \( n \) identische Teilchen auf \( m \) verschiedene und nur einmalig besetzbare Zustände zu verteilen?
Lösungstipps

Die Teilchen müssen stets - offensichtlich - irgendeinen Zustand annehmen, d.h. es gilt: \( m ~\geq~ n \).

Lösung

Lösung zu (a)

"unterscheidbar" bedeutet: Es macht einen Unterschied, ob Du die Teilchen untereinander vertauschst, nachdem Du sie auf die Zustände verteilt hast.

verschiedene Zustände bedeutet das Gleiche, wie bei den "unterscheidbaren Teilchen".

"mehrfach besetzbare Zustände" bedeutet: Du kannst mehrere oder sogar alle Teilchen auf einen einzigen Zustand setzen. Du kannst Dir das so vorstellen, als hätte jeder Zustand "unendlich viel Platz".

Setzt Du nun erstes Teilchen auf einen Zustand, so können die übrigen \( (n-1)\) Teilchen immernoch einen der \( m \) Zustände annehmen (und nicht \( (m-1) \) Zustände, wie es im Fall von "einfach besetzbaren" Zuständen wäre).

Das erste Teilchen hat \( m \) mögliche Zustände. Das zweite Teilchen auch, das dritte, das vierte und auch das \(n\)-te Teilchen. Also gibt es folgende Anzahl an Möglichkeiten: \[ m~\cdot~m~\cdot~m~\cdot~...~\cdot~m ~=~ m^n \]

Lösung zu (b)

Der Fall ist fast wie bei Teilaufgabe (a) mit dem einzigen Unterschied, dass es keinen Unterschied mehr macht, wenn Du die Teilchen, die Du auf die Zustände verteilt hast, untereinander vertauschst. Die Teilchen sind ja identisch! \[ \frac{m^n}{n!} \]

Lösung zu (c)

Nun hast Du nur einmalig besetzbare Zustände. Setzt Du erstes Teilchen auf einen Zustand, so bleiben nur noch \( (m-1) \) Zustände für die übrigen Teilchen.\[ \frac{m!}{(m-n)!} \]

Lösung zu (d)

Wie bei Teilaufgabe (c), mit dem Unterschied, dass Du die ununterscheidbarkeit der Teilchen wegdividieren musst. \[ \frac{m!}{n! \, (m-n)!} = \left(\begin{array}{c}m\\ n\end{array}\right) \]

Details zum Inhalt
  • Die Quest wurde hinzugefügt von FufaeV am .
  • Die Quest wurde aktualisiert von FufaeV am .

Feedback geben

Hey! Ich bin Alexander FufaeV, der Physiker und Autor hier. Es ist mir wichtig, dass du stets sehr zufrieden bist, wenn du hierher kommst, um deine Fragen und Probleme zu klären. Da ich aber keine Glaskugel besitze, bin ich auf dein Feedback angewiesen. So kann ich Fehler beseitigen und diesen Inhalt verbessern, damit auch andere Besucher von deinem Feedback profitieren können.

Wie zufrieden bist Du?