Direkt zum Inhalt
  1. Startseite
  2. Quests
  3. #417

Aufgabe mit Lösung Spaltabstand des Doppelspalts mittels Minima-Abstand berechnen

Abstand \( a \) zwischen dem Doppelspalt und dem Schirm. Interferenzstreifen-Abstand \( x \) und der vom rechtwinkligen Dreieck eingeschlossene Winkel \( \theta \) sind hier wichtig.

Ein Doppelspalt wird mit rotem Licht der Wellenlänge \( \lambda ~=~ 650 \, \text{nm} \) parallel bestrahlt. Im Abstand \( a ~=~ 3 \, \text{m} \) vom Doppelspalt steht ein Schirm, auf dem ein scharfes Interferenzmuster zu sehen ist. Da es nicht einfach ist, den Abstand vom Hauptmaximum zum 1. Maximum zu bestimmen, wird stattdessen der Abstand vom 5. Minimum bis zum gegenüberliegenden 5. Minimum gemessen und zwar \( \Delta x ~=~ 6 \, \text{cm} \).

Welchen Abstand \( g \) haben die beiden Spalte, durch die das Licht gegangen ist?

Lösungstipps

Benutze eine Skizze zum Doppelspalt. Hilft enorm! Benutze aber auch Dein Wissen, aus dem Artikel zum Doppelspaltexperiment.

Lösung

Lösung anzeigen

Da das rote Licht parallel den Doppelspalt trifft, kommen die Lichtwellen an beiden Spalten in Phase an. Und, weil die Wellen in Phase sind, gilt die Bedingung für destruktive Interferenz folgendermaßen: 1 \[ \Delta s ~=~ \left( m ~-~ \frac{1}{2} \right) \, \lambda \]

Dabei ist \( \Delta s \) der Gangunterschied und \( m ~=~ 1,2,3... \) gibt die Ordnung der Minima an. Wir haben die Bedingung für destruktive und nicht konstruktive Interferenz genommen, weil in der Aufgabenstellung der Abstand zweier Minima gegeben ist. Minima sind ja die Stellen am Schirm, die dunkel sind. Die Lichtwellen haben sich an diesen Stellen ausgelöscht.

Was den Spaltabstand angeht: Der ist unbekannt. Was Du aber über den durch das Angucken sagen kannst ist, dass er sehr klein ist... (Ich habs ausgerechnet, er IST klein *hust*). Der Abstand vom Spalt zum Schirm \( a ~=~ 3 \, \text{m} \) ist somit viel größer als der noch unbekannte Spaltabstand \( g \). Das heißt: Du darfst die folgende Näherung verwenden: 2 \[ \tan(\phi) ~\approx~ \sin(\phi) ~=~ \frac{x}{a} \]

Die Position \( x \) am Schirm (von der Mitte aus gemessen) ist nur indirekt bekannt. Es wurde ja der Abstand zwischen den 5. Minimas gemessen. Da das Interferenzmuster symmetrisch ist, ist der Abstand vom Hauptmaximum zum 5. Minimum gerade mal die Hälfte des gemessenen Wertes. Dies ist auch die gesuchte Position \( x \) am Schirm: \( x ~=~ \frac{\Delta x}{2} \). Setze sie in 2 ein: 3 \[ \sin(\phi) ~=~ \frac{\Delta x}{2a} \]

Aus dem rechtwinkligen Dreieck, wo die Gegenkathete der Gangunterschied \( \Delta s \) ist, kannst Du ablesen: 4 \[ \sin(\phi) ~=~ \frac{\Delta s}{g} \]

Setze jetzt 3 und 4 gleich: 5 \[ \frac{\Delta x}{2a} ~=~ \frac{\Delta s}{g} \]

Du willst ja die Minima's betrachten, also setze auch die Bedingung für die destruktive Interferenz 1 in 5 ein: 6 \[ \frac{x}{a} ~=~ \frac{ \left( m ~-~ \frac{1}{2} \right) \, \lambda }{g} \]

Nun hast Du eine Beziehung hergeleitet, die nur Größen enthält, die in der Aufgabenstellung gegeben sind. Forme 5 nur noch nach dem gesuchten Spaltabstand \( g \) um: 7 \[ g ~=~ \frac{ 2a \, \left( m ~-~ \frac{1}{2} \right) \, \lambda }{ \Delta x } \]

Einsetzen der gegebenen Werte ergibt: 8 \[ g ~=~ \frac{ 2 \cdot 3\text{m} ~\cdot~ \left( 5 ~-~ \frac{1}{2} \right) ~\cdot~ 650 \cdot 10^{-9}\text{m} }{ 0.06\text{m} } ~=~ 2.925 \cdot 10^{-4} \, \text{m} \]

Das entspricht einem Spaltabstand von ungefähr \( 0.3 \text{mm} \), was kaum mit einem Lineal zu messen ist... aber zum Glück geht das mit dem Doppelspaltexperiment!

Details zum Inhalt
  • Die Quest wurde hinzugefügt von FufaeV am .
  • Die Quest wurde aktualisiert von FufaeV am .

Feedback geben

Hey! Ich bin Alexander FufaeV, der Physiker und Autor hier. Es ist mir wichtig, dass du stets sehr zufrieden bist, wenn du hierher kommst, um deine Fragen und Probleme zu klären. Da ich aber keine Glaskugel besitze, bin ich auf dein Feedback angewiesen. So kann ich Fehler beseitigen und diesen Inhalt verbessern, damit auch andere Besucher von deinem Feedback profitieren können.

Wie zufrieden bist Du?