Direkt zum Inhalt
  1. Startseite
  2. Quests
  3. #424

Aufgabe mit Lösung Gradient vom Betrag r eines Ortsvektors

Gegeben ist Betrag eines Ortsvektors |\( \boldsymbol{r} \)| = \( \sqrt{x^{2}+y^{2}+z^{2}} \). Bestimme den Gradienten von |\( \boldsymbol{r} \)|

Lösungstipps

Gehe die Lektion über den Gradienten durch.

Lösung

Lösung anzeigen

Betrag des Ortsvektors ist eine skalare Funktion. Wende darauf den Nabla-Operator an, d.h. leite Funktion |\( \boldsymbol{r} \)| nach jeder Ortskomponente (\(x,y,z\)) ab: 1 \[ \boldsymbol{\nabla}{|\boldsymbol{r}|}\left(x,y,z \right) ~=~ \left( \frac{ \partial{|\boldsymbol{r}|} }{ \partial{x} }, \frac{ \partial{|\boldsymbol{r}|} }{ \partial{y} }, \frac{ \partial{|\boldsymbol{r}|} }{ \partial{z} } \right) \]

Rechne jede Komponente aus, dann bekommst Du:

  • 1.Komponente: 2 \[ \frac{ \partial }{ \partial{x} } \, \sqrt{x^{2}+y^{2}+z^{2}} ~=~ \frac{1}{2}\frac{2x}{ \sqrt{x^{2}+y^{2}+z^{2}} } \]
  • 2.Komponente: 3 \[ \frac{ \partial }{ \partial{y} } \, \sqrt{x^{2}+y^{2}+z^{2}} ~=~ \frac{1}{2}\frac{2y}{ \sqrt{x^{2}+y^{2}+z^{2}} } \]
  • 3.Komponente: 4 \[ \frac{ \partial }{ \partial{z} } \, \sqrt{x^{2}+y^{2}+z^{2}} ~=~ \frac{1}{2}\frac{2z}{ \sqrt{x^{2}+y^{2}+z^{2}} } \]

2 und \( \frac{1}{2} \) kürzen sich weg. Am Ende steht folgendes Vektorfeld (wobei \( \sqrt{x^{2}+y^{2}+z^{2}} \) ausgeklammert wurde): 5 \[ \boldsymbol{\nabla}{|\boldsymbol{r}|}\left(x,y,z \right) ~=~ \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \left( x, y, z \right) \]

Dabei ist (\(x,y,z\)) ein Ortsvektor \(\boldsymbol{r}\). Insgesamt ist der Gradient also: 6 \[ \frac{\boldsymbol{r}}{|\boldsymbol{r}|} := \boldsymbol{\hat{r}} \]

Das Ergebnis ist also ein Einheitsvektor \( \boldsymbol{\hat{r}} \) in Richtung \( \boldsymbol{r} \).

Details zum Inhalt
  • Die Quest wurde hinzugefügt von FufaeV am .
  • Die Quest wurde aktualisiert von FufaeV am .

Feedback geben

Hey! Ich bin Alexander FufaeV, der Physiker und Autor hier. Es ist mir wichtig, dass du stets sehr zufrieden bist, wenn du hierher kommst, um deine Fragen und Probleme zu klären. Da ich aber keine Glaskugel besitze, bin ich auf dein Feedback angewiesen. So kann ich Fehler beseitigen und diesen Inhalt verbessern, damit auch andere Besucher von deinem Feedback profitieren können.

Wie zufrieden bist Du?